Post Thumb

Peering into giant planets from in and out of this world

Share it

Lawrence Livermore scientists for the first time have experimentally re-created the conditions that exist deep inside giant planets, such as Jupiter, Uranus, and many of the planets recently discovered outside our solar system.

Researchers can now re-create and accurately measure material properties that control how these planets evolve over time, information essential for understanding how these massive objects form.

This study focused on carbon, the fourth most abundant element in the cosmos, which has an important role in many types of planets within and outside our solar system.

Using the largest laser in the world, the National Ignition Facility at Lawrence Livermore National Laboratory in California, teams from the Laboratory, University of California, Berkeley, and Princeton University squeezed samples to 50 million times Earth’s atmospheric pressure, which is comparable to the pressures at the center of Jupiter and Saturn.

Of the 192 lasers at NIF, the team used 176 with exquisitely shaped energy versus time to produce a pressure wave that compressed the material for a short period of time.

The technical challenge was keeping temperatures low enough to be relevant to planets.

“This new ability to explore matter at atomic scale pressures, where extrapolations of earlier shock and static data become unreliable, provides new constraints for dense matter theories and planet evolution models,” said Rip Collins from LLNL. The data described in this work are among the first tests for predictions made in the early days of quantum mechanics, more than 80 years ago, which are routinely used to describe matter at the center of planets and stars.

read more...

Article originally posted at astronomy.com

Post Author: Carla Parsons

Leave a Reply

Your email address will not be published. Required fields are marked *