Post Thumb

Physicists Just Transferred Quantum Data Between Different Materials For The First Time

Share it

Scientists just took a big step towards the goal of quantum computers, and even a quantum internet to connect them, after successfully using photons to transfer quantum information between a cold atomic gas and a solid crystal.

Passing data between these two “Nodes” or types of storage shows that it should be possible to build hybrid quantum computers that mix various nodes together, making them more stable and practical to use.

“In order for them to communicate, it is necessary to convert the single photon’s properties so it can efficiently transfer all the information between these different nodes.”

No one has managed to pass quantum information between two different types of node before, as they typically function at different bandwidths and different wavelengths.

These qubits are the building blocks of quantum computing, able to be in superposition – two states at once – rather than computer bits of today, which are fixed as either 1s or 0s. Once we figure out how to manipulate these qubits reliably and accurately enough, the processing leaps should be huge.

Because different types of nodes are better at different tasks – like encoding in the case of a gas, or storage in the case of a crystal – hybrid networks are an important avenue for further exploration as we try and harness the full power of quantum computing.

“Being able to connect quantum nodes with very different functionalities and capabilities and transmitting quantum bits by means of single photons between them represents an important milestone in the development of hybrid quantum networks,” says one of the researchers, Hugues de Riedmatten.


Article originally posted at

Post Author: John Koetsier

1 thought on “Physicists Just Transferred Quantum Data Between Different Materials For The First Time

    Jason Blain

    (January 23, 2018 - 8:16 pm)

    It seems quantum entanglement would be a great way to communicate with devices and probes in space.

Leave a Reply

Your email address will not be published. Required fields are marked *